
REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY /Leaveblank) 2. REPORT DATE

December 1999

3. REPORT TYPE AND DATES COVERED

MORS Paper
4. TITLE AND SUBTITLE

DYNAMIC ROUTING OF UNMANNED AERIAL VEHICLES USING
REACTIVE TABU SEARCH

6. AUTHOR(S)

Kevin P. O'Rourke, T. Glenn Bailey, Raymond Hill, William B. Carlton

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology
Department of Operational Sciences
2950 P Street
Wright Patterson AFB OH 45433-7765

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GOA/ENS/99M-06

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Lt Col Mark A. O'Hair, Chief, Systems Integration Division (DOM)
Unmanned Aerial Vehicle Battlelab
1003 Nomad Way Ste 107
Eglin AFB FL 32542-6867

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.
12b. DISTRIBUTION CODE

20000804 183
13. ABSTRACT (Maximum 200 words)

In this paper we consider the dynamic routing of unmanned aerial vehicles (UAVs) currently in operational use with the US
Air Force. Dynamic vehicle routing problems (VRP) have always been challenging, and the airborne version of the VRP
adds dimensions and difficulties not present in typical ground-based applications. Previous UAV routing work has focused
on primarily on static, pre-planned situations; however, scheduling military operations, which are often ad-hoc, drives the
need for a dynamic route solver that can respond to rapidly evolving problem constraints. With these considerations in mind,
we examine the use of a Java-encoded metaheuristic to solve these dynamic routing problems, explore its operation with
several general problem classes, and look at the advantages it provides in sample UAV routing problems. The end routine
provides routing information for a UAV virtual battlespace simulation and allows dynamic routing of operational missions.

14. SUBJECT TERMS

Air Force Research, Operations Research, Optimization, Combinatorial Analysis, Algorithms,
Remotely Piloted Vehicles, Surveillance Drones, Tabu Search, Vehicle Routing Problem, Java,
Heuristics, Traveling Salesman Problem

15. NUMBER OF PAGES

40
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF
ABSTRACT

UL

DUO QUALHfT niSPECJSBD 4
Standard Form 298 (Rev. 2-89| (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHSIDIOR, Oct B4

Dynamic Routing of Unmanned Aerial Vehicles Using Reactive Tabu Search

Kevin P. O'Rourke
T. Glenn Bailey
Raymond Hill

William B. Carlton

Air Force Institute of Technology
Department of Operational Sciences

2950 P St., Bldg 640
Wright-Patterson AFB OH, 45433-7765

Voice 937.255.6565 x4332
Fax 937.656.4943

Email Ray.Hill@afit.af.mil

67th MORS Symposium
Working Group 10 — Unmanned Systems

26 November 1999

ABSTRACT INTRODUCTION

In this paper we consider the
dynamic routing of unmanned aerial
vehicles (UAVs) currently in operational use
with the US Air Force. Dynamic vehicle
routing problems (VRP) have always been
challenging, and the airborne version of the
VRP adds dimensions and difficulties not
present in typical ground-based applications.
Previous UAV routing work has focused
primarily on static, pre-planned situations;
however, scheduling military operations,
which are often ad-hoc, drives the need for a
dynamic route solver that can respond to
rapidly evolving problem constraints. With
these considerations in mind, we examine
the use of a Java-encoded metaheuristic to
solve these dynamic routing problems,
explore its operation with several general
problem classes, and look at the advantages
it provides in sample UAV routing
problems. The end routine provides routing
information for a UAV virtual battlespace
simulation and allows dynamic routing of
operational missions.

Unmanned Aerial Vehicle (UAV)
routing is a complex problem, and earlier
work on the subject examined essentially
predefined static scenarios. A tabu search
coupled with a Monte Carlo Simulation was
used to find the minimum number of
vehicles required based on stochastic
survival probabilities (Sisson 1997).
Stochastic simulations involved selecting the
best predefined route based on expected
values of service, wind, and survival
variables (Ryan 1998). This produced a
robust tour which could then be used to
mission plan a given set of targets with
unknown threat and wind conditions at the
time of mission execution. This approach is
wholly appropriate for an autonomous UAV
which is preprogrammed to execute a
planned mission. While this gives a good
starting point for a route schedule, it does
not incorporate the latest information—
information that can rapidly change.

The continuously evolving mission is
a primary concern, especially to the

operators of a long-duration, unmanned
aerial vehicle such as the US Air Force's
RQ-1A Predator. An ability to dynamically
adapt to the latest target update is
fundamental to successful military
operations. Therefore, we seek to take
maximum advantage of current information
(winds, target locations, threats, priorities) to
dynamically generate and update routes for
real-time use. This requires a method fast
enough to be operationally effective, robust
enough to handle a wide scope of problems,
and reliable enough to provide optimal (or
near optimal) solutions.

Most routing problems are NP-hard
combinatorial problems for which no
polynomially bounded algorithm has been
found (Bodin et al. 1983). Convergent
algorithms can rarely solve large problems
consisting of more than 50 customers and
often require relatively few side constraints
(Gendreau et al. 1997). Unfortunately, real-
world problems, such as UAV routing,
possess many side constraints such as route
and vehicle capacities, route length
restrictions, and time windows in a sizeable
network. Additionally, this network may be
comprised of multiple depots and
heterogeneous vehicles. Finding optimal
solutions to these types of problems by
using techniques such as branch and bound
or dynamic programming is currently not
practical.

Several heuristic approaches have
been used in an attempt to overcome these
problems. Greedy algorithms, which prove
to be very useful in simpler problems, fail to
achieve the desired results with respect to
solution quality. Simulated annealing (SA)
displays large variances in computational
time and solution quality due to the random
nature of its search strategy (Osman 1993).
Genetic algorithms (GAs), which are
designed to solve numerical optimization
problems rather than combinatorial
optimization problems, are difficult to apply

to vehicle routing problems (VRPs) that
require capacity, distance, and time window
constraints (Gendreau et al. 1997).
Fortunately, tabu search (TS) (Glover 1989)
provides excellent results on these types of
problems. The tabu search heuristic uses
adaptive memory structures as it searches
the solution space. Moves from one solution
to another are made in a forced and orderly
manner, and this forced move methodology
allows the tabu search to escape the local
extreme points. At each iteration, the tabu
search will select a solution from the
neighborhood provided the new candidate
solution is not on the tabu list. The tabu list
is a data structure which keeps track of past
solutions visited so that new solutions must
be examined. Since the search must pick a
new solution at each iteration, the items on
the tabu list will be tabu, or off-limits, and
the heuristic will pick the best non-tabu
move, which may actually be a worse
solution. This seems somewhat counter-
intuitive, but the search will continue on to
find unexplored areas which potentially may
yield better overall results. A special
instance called aspiration allows the tabu
status of a move to be overruled if certain
conditions are met. The tabu status will be
overridden and the solution accepted if it is
deemed good enough based on certain
attractiveness thresholds. The length of time
a solution stays on the tabu list is determined
by the tabu list length. Based on the length
of the tabu list, the behavior of the search
can be significantly altered. If the list is
shortened, intensification occurs and the
local area will be searched more thoroughly
as the search gravitates towards the local
optimum. If the list is lengthened,
diversification occurs and the search will be
forced leave its current area to explore new
areas further away in the solution space
(Glover 1997).

The literature shows TS is a robust
approach to solving many variations of the

VRP and dominates current studies of
routing problems (Garcia et al. 1994, Osman
1993, Rochat and Semet 1994, Carlton
1995, Xu and Kelly 1996, Chiang and
Russell 1997, Gendreau et al. 1997,
Barbarosoglu and Ozgur 1999). Even
certain vehicle routing methods, such as the
sweep method and petal heuristic, are not as
powerful as tabu search algorithms (Renaud
etal. 1996b).

This project explores the application
of the reactive tabu search (RTS)
metaheuristic to routing problems,
specifically the vehicle routing problem with
time windows (VRPTW). Our RTS follows
the basic TS scheme, but differs in that it
actively adjusts the tabu length based on the
quality of the search, as determined by the
number of iterations before a solution is
revisited. In execution this project
implements the object-oriented (00) Java
programming language for two reasons.
First, the OO design of software allows us to
reuse and modify existing code and libraries
which reduces the development time of new
software routines to extend problems (Eckel
1998). Second, Java programs offer a cross-
platform compatibility which enhances
portability. Our Java heuristic
implementation follows, improves, and
extends a MODSHvl implementation (Ryan
1998) based on an RTS developed by Battiti
and Tecchiolli (1994) and implemented by
Carlton (1995).

In this paper, first we examine a
reactive tabu search heuristic suitable for
solving traveling salesman and vehicle
routing problems and provide our results
from a Java implementation of this solver.
We look at enhancements to the RTS, the
verification and validation results, and
explore how this tabu search successfully
solves tough problems. We review past
work and general formulation of the UAV
routing problem. We look at our
modifications to previous efforts and show

how the RTS enables us to solve this
problem in particular. Finally, we suggest
areas for future exploration.

REACTIVE TABU SEARCH FOR THE
VEHICLE ROUTING PROBLEM WITH
TIME WINDOWS

The vehicle routing problem with
time windows (VRPTW) is defined as
follows. Let G = (V, A) be a graph where
V = {v0,v,,..-.,vn} is the vertex set and

A = {(vl,vJ): v,.,v- e V, i* j] is the arc

set. The depot vertex vo, has m identical
vehicles, each with a maximum load
capacity Q and a maximum route duration
D. The remaining vertices v,. e V represent

customers to be serviced, each with a non-
negative demand qt, a service time Sj, and a
service time window comprised of a no-
earlier-than time e,- and a no-later-than time
£r The no-earlier-than time window
constraint is considered soft, i.e., an arrival
time a, before the early time results in a wait
time wi until e, to commence service. Each
edge (v„ Vj) has an associated non-negative
cost cij, interpreted as travel time fy between
locations i and/.

The objective of the vehicle routing
problem with time windows (VRPTW) is to
determine a set of m vehicle routes starting
and ending at the depot, such that each
customer is visited exactly once within its
time window, the total demand of any
vehicle route does not exceed Q, the
duration of any vehicle route does not
exceed D, and the total cost of all routes is
minimized. When only one vehicle is
available and Q, D, d, and li are non-

binding constraints, the problem reduces to a
traveling salesman problem (Renaud et al.
1996a).

A tour is defined by the order in
which the n customers are served by the m
vehicles. In our heuristic, we represent the

problem as an ordered list of the sequence of
customers and vehicles, or disjunctive

graph, as shown in Figure 1.

T(d) =

0 12 3 4 5 6 7 8

0 ►{j') ^2") • 5 ^3^) ^") 6 - — 7 — — 8

m Vehicle Nodes

(n j Customer Nodes

Figure 1. Disjunctive Graph Notation

The first and last positions (0 and n
+ m) in this sequence represent the initial
depot/vehicle and an additional terminal
depot required to close the graph. These
two nodes are fixed and will not move
during the search. Initially, the customers
occupy positions between 1 and n and the

additional vehicles occupy the remaining
positions between n + 1 and n + m - 1 as
shown in Figure 2. During the search,
customers and vehicles will be interspersed,
and unused vehicles will occupy positions
between the last serviced customer and the
final depot.

T(d). <D-®-
n n + 1

 / fl J *n + 1 ►

m Vehicle Nodes

(n j Customer Nodes

Figure 2. Initial Tour Sequence

n + m - 1 n + m

n +m
-1

OBJECTIVE FUNCTION

For, the generic VRPTW, we seek to
minimize travel costs ci} along the selected

arcs identified by Xy = 1. This is given by

minimize Zf (0 = Z Z cüxu (l)
j •

where

X = (Xjj)eS, ^e{0,l} V i,j.

Full enumeration of all constraints is
available in Appendix A.

Penalized Objective Function

A major advantage of our method is
that it effectively explores the solution space
by considering both feasible and infeasible
solutions. First, instead of being restricted

only to feasible regions, our RTS can
traverse regions of infeasibility to include
starting with an infeasible initial solution.
Second, the infeasible solutions generated
may be used in real world applications with
flexible constraints. For instance, an
infeasible solution that produces superb
overall results may become feasible with the
relaxation of a constraint controlled by the
decision-maker. Such a case occurred with
a delivery problem solved by Rochat and
Semet (1994). Since very few real-world
constraints are absolutely hard, these
infeasible solutions may represent some
difficult route selection choices that
managers may face when trying to balance
competing criteria.

A solution is infeasible if it violates a
time window, load capacity, or duration
constraint. Constraint violations include
missed time windows TW and excess vehicle
load capacity LD defined as

TW = £[max(0,a,. -^,.)] +]T[max(0,a,. -£>,.)]
i i

and

LD = Yt[max(0,q.-Q.)]
i

respectively. Each constraint violation is
scaled by a corresponding penalty factor,
PJW and pLD, giving the penalized

objective function as

min Z(t) = Zf (t)+pLDLD + pmTW (2)

where Zj(t) is the original objective function
given by (1). If the solution is feasible, then
Zj{i) and Z(t) are equivalent. Otherwise, Z(t)
will include non-zero penalty terms.

Adjusting Reactive Penalty Coefficients

The penalty factors should be large
enough to separate the infeasible and
feasible regions of the solution space so that
infeasible solutions do not dominate feasible
solutions. The penalty factors should also
be small enough to allow consideration of
infeasible solutions. Appropriate penalty
values can be very difficult to calculate
(Petridis et al. 1998), so our implementation
allows for self-adjusting penalty values in
addition to constant user-set penalty values.

When self-adjusting, the value of the
penalty coefficients pLD and pm are

independently adjusted every five iterations
as proposed by Gendreau et al. (1996) using
the relationship

PTW ~ PTW ' ^

PLD=PLD-
25

where tm is the number of time window
infeasible solutions among the last ten
solutions and tLD is the number of capacity
infeasible solutions among the last ten
solutions. If all ten previous solutions are
feasible, the current p is multiplied by l/2.
If all ten previous solutions are infeasible,
the current p is multiplied by 2.
Intermediate numbers of infeasible solutions
yield multiplicative factors between x/2 and
2. The penalty values are arbitrarily limited
to the closed interval [0.1, 10200], a range
easily represented by Java. This prevents
the penalties from being rounded by Java to
unadjustable zero or infinity values. In the
reactive penalty scheme, we arbitrarily set
both penalty values initially to 1000.

The reactive penalties provide a
measure of trajectory control into and out of
feasible regions based on the collective
feasibility of the previous solutions. When

many successive solutions are feasible, the
lowered penalties do not strongly discourage
movement to an infeasible solution.
Successive infeasible solutions drive the
penalties higher, putting increasingly greater
emphasis on finding a feasible solution.

Initial Solution

An initial solution, which may or
may not be feasible, is arbitrarily
constructed. We employ three options for
arranging this initial solution—the first is a
listed ordering, the second is based on the
time window midpoint, and the third is
based on a randomized ordering. All three
methods arbitrarily construct a solution by
assigning all customers to one vehicle.

The list ordered tour method (LOT)
simply assigns customers to the vehicle in
the order that they are listed in the data set.
The ordered starting tour (OST) method
generates a starting solution by sorting the
customers based upon increasing time
window midpoint values while enforcing the
time window feasibility conditions. The
time window midpoint for the customer / is
defined as halfway between e. and £r

The random starting tour (RST)
method randomly reorders the sequential
starting list of customers to provide a

different starting point. Since the tabu
search is a neighborhood search, the initial
starting solution will influence the
progression of the search. Our
experimentation suggests that the reactive
tabu search is robust and relatively
insensitive to the initial tour.

Neighborhood Structure

Our solution neighborhood is the set
of tours immediately reachable from the
current solution with a single 3-opt move.
The 3-opt move removes three edges and
replaces them with three new edges in a way
that moves one vertex to another location in
the tour sequence. From the disjunctive
graph formulation, the solution
neighborhood is examined with incremental
swap moves and updated with an insertion
move. A swap move exchanges the position
of two adjacent nodes with a 3-opt move as
shown in Figure 3. An insertion move
relocates a specific customer at location i
forwards or backwards in the tour by a
number of steps called the insertion depth d.
In our implementation, an insertion is
executed as a series of sequential swap
moves.

Initial Sequence before Swap

CD-
O--0

D

Updated Sequence after Swap

0 o
 ► Arcs affected by the swap

(J Nodes affected by the swap

Figure 3. Adjacent 3-Opt Swap Move

This move type yields a staggering
(« + m - 1)! possible solution permutations
—a relatively simple 25 customer, 5 vehicle
problem has 8.842 x 1030 possible solutions.
To reduce the neighborhood size, moves
which result in a redundant tour are
prohibited. Additionally, strong time
window feasibility is enforced (Carlton
1995).

Strong time window infeasible states
occur between nodes i and j whenever a
vehicle leaving node / at departure time dt

can never arrive at nodey within the required
time window. Specifically, node j is strong
time window infeasible with respect to node
i if

di +tij >*j v d, =ai+si, a,. € [eit£i].

Weak time window infeasible states occur
when only some departure times preclude a
timely arrival at the following node, i.e.,

V d, = a{ + s,,

ax <t,t& [«,.,*,.).

Unlike strong time window infeasible tours,
weak time window infeasible tours are
evaluated in the search since insertion
moves can ultimately reduce the amount of
infeasibility in the overall tour (Carlton
1995). Past vehicle routing problem
research indicates that feasible solutions
may be isolated or disjoint from each other
in the solution space, so in order to
effectively search the solution space, the
method must investigate and perhaps accept
infeasible solutions. This search of the
infeasible region is facilitated by our use of
penalty factors.

Tabu Moves

Tabu search uses a memory structure
to determine if a particular tour has already
been visited by examining its attributes. The
examination must efficiently and reliably
store and identify solution attributes
previously altered during the search. We
employ an (n + 1) x (n + 1) dimension
Tabulist matrix with rows corresponding to
customer identification numbers and
columns corresponding to the index, or
position, of the customer in the solution
tour. The data elements in this array store
the iteration number k for the move that
placed the customer into this position plus
the tabu length 9. This value will be
compared to the current iteration to
determine if a move of this attribute is tabu.

Adjusting Tabu Length

To maintain search quality, we
reactively adjust the tabu length based on
the number of iterations occurring between
cycles. Cycles occur when the search
revisits a solution; a high quality search
should infrequently revisit past solutions.
Given the combinatorial nature of the
problem, it is possible to select a seemingly
different tour that is actually a redundant
tour—one that appears new, but in fact is a
revisit of a previous equivalent tour. Figure
4 illustrates two different tours which are
actually redundant tours.

Redundant tours are identified with a
two-attribute hashing scheme. The first
hashing attribute, the hashing function f(t), is
assigned the objective function value Z(i).
Woodruff and Zemel (1993) propose a
method that we use to compute the second
hashing attribute, the tour hashing value
thv(t). We take the tour vector and calculate
an integer based on random integer values,
^(ti), where Tj is the index of the customer
assigned to tour position /, such that

r/zv(r) = X^(^)-vF(r,.+1)

This tour hashing value attempts to
minimize the occurrence of a collision, or
the incorrect identification of two tours as
being identical or redundant when they are
actually distinct.

T(l) o —.Q—.Q—« 6 —^7)—{7)—. 7 —{T)—- 8

T{2) K5MiH -d>
Figure 4. Redundant Tours

1 A 2 ►

We also use other attributes to
identify a solution; these are tour cost, travel
time, time window penalty, and total
penalty. These integer values are
concatenated into a uniquely identifiable
Java string object and stored with Java
Hashtable class functions. This unique
string value allows us to efficiently identify
past solutions, as well as access the hash
record containing solution attributes stored
in their original form.

When the search revisits a solution
within the designated number of iterations,
or cycle length, the tabu length is increased
by a scaling factor. This tabu length
increase diversifies the search. If the search
is not revisiting solutions, tabu length is
decreased by a scaling factor. When a
solution is revisited within the maximum
cycle length, the algorithm calculates a
moving average of cycle lengths, or the
average number of iterations between a
revisit. If the tabu length has remained
unchanged for a number of iterations greater
than or equal to this moving average, then
the current tabu length is decreased by the
scaling factor, thus intensifying the search.
We set the initial tabu length value 6 to the
smaller of either 30 or m + n - 1.

Aspiration and Escape Functions

Aspiration allows for overriding the
tabu status of a move if the proposed tour
solution is better than any previous solution.
If all moves are tabu and no proposed
solution meets aspiration criteria, the search
escapes to the neighbor tour with smallest
move value. This escape move is
accomplished regardless of tabu status and
results in a tabu length decrease.

Move Evaluation and Selection

The RTS systematically explores the
solution space using a series of swap moves
and chooses the allowable adjacent solution
with the smallest move value. The move
value is the difference between the
incumbent's objective function value and
the candidate's objective function value
given as the cost/travel savings resulting
directly from the 3-opt move and the
resultant changes occurring in the rest of the
tour.

Heuristic Description

Crucial to the success of the solver is
the time matrix which contains the travel
times ty between every node combination i,

j. The time matrix is built in a three-step between arrival at node i and the subsequent
process. First, cartesian distances between arrival at node j. We use these values as our
locations are computed. Second, these costs, i.e., Cy = tl}. Actual en route travel
distances are converted to times based on time can be calculated by subtracting service
problem parameters. Third, the service time time s, from fy.
at node i is added to the time. As such, fy The reactive tabu search executes the
values then represent the amount of time following steps:

Step 1 (Initialization) Initialize data structures, vectors, and
parameters.

Step 2 (Problem Input) Read data and assign node information.
Calculate appropriate time matrix.

Step 3 (Route Initialization) Construct initial tour, calculate initial
tour schedule, and compute associated tour cost and
hashing value. Store values. Assign initial tour as
incumbent tour.

Step 4 (Cycle Check) Check hashing structure for the incumbent
tour. If found, update the iteration when found, increase
the tabu length if applicable. If not found, add to the
hashing structure, decrease the tabu length, if applicable.
Increment current iteration number.

Step 5 (Check Later Insertions) Accomplish swap moves to
evaluate all forwards insertions. Store position i and depth
d of best move value, aspiration, and escape information.

Step 6 (Check Earlier Insertions) Accomplish swap move to
evaluate all backwards insertions. Store i, d of best move
value, aspiration, and escape information.

Step 7 (Execute Move) Move to a non-tabu neighbor according to
appropriate decision criteria. If all moves are tabu, use the
escape move and reduce the tabu length. Perform insertion,
update schedule, assign neighbor tour as new incumbent
tour, compute hashing value, and track best tour
information. If current iteration number is less than the
maximum iteration number, return to Step 4.

Step 8 (Output results) Terminate heuristic search and output
results.

Computational Complexity

The neighborhood size considered at
each step is 0(nd), and the computation of
the move value for each neighbor is 0(n). If
the depth of the insertion moves is restricted
to 1, then the algorithm achieves a minimum
computational complexity of 0(n2). The
worst case complexity is 0(n2d) where d is
the depth of the allowable insertion moves.
When the insertion depth is expanded to n
the computational complexity expands with
it to a maximum 0(n3). However, empirical
testing shows that considerably better times
than 0(n3) can be achieved due to the strong
time window infeasibility restriction
discussed earlier (Carlton 1995).

We seek to enhance the capabilities
of existing mission software. Current
software will automatically generate
deterministic items such as terrain avoidance
profiles, ground station to UAV line of site
availability, route times between defined
way points, fuel consumption, heading and
turn information, etc., but it does not and
will not optimize routes. This combinatorial
problem is a task left to the operator. We
provide our routing tool to fill the gap that
exists in making complicated routing
decisions.

Since this is a real-world operational
problem, several real-world operational
factors influence our implementation
approach.

REACTIVE TABU SEARCH FOR
DYNAMIC UNMANNED AERIAL
VEHICLE ROUTING

The US Air Force uses the Predator
UAV to perform a reconnaissance and
surveillance mission. The Predator is
remotely flown by Air Vehicle Operators,
who are Air Force pilots, located in a
Ground Control Station. Co-located
Payload Specialists remotely control the
electro-optical camera, infrared scanner, and
synthetic aperture radar to observe targets of
interest as specified by higher command
elements. The imagery is returned real-time
via satellite link to intelligence specialists
and regional commanders (McKenna 1998).
The Predator has been used successfully to
monitor buildings, military forces, and battle
activities in Bosnia pursuant to United
Nations and NATO missions. The
Predator's long airborne endurance of nearly
40 hours and its ground based control
system (with ready access to computers)
makes it an ideal candidate for efficient
computerized routing strategies.

Operational Parameters

Operational employment of the UAV
drives several changes to how the problem
data is specified and solved. These changes
range from relatively superficial ones in how
the coordinates and times are represented, to
moderate changes in how the parameters are
calculated, to significant changes in how the
objective function is formulated to reflect
the nature of the problem.

Geographic Coordinates

Coordinates are expressed in a
geocentric format instead of a Cartesian
format. We calculate the distance and
bearing between coordinate points as shown
in AFR 51-40, Air Navigation (Departments
of the Air Force and Navy 1983). Given the
departure latitude L\ and longitude \\ and
the destination latitude L2 and longitude X2,
the great circle distance d in nautical miles
between the two coordinate points can be
found using the following formulation

10

d = 60 • cos-1 [sin L, • sin L, + cos L, • cos Z^ • cos(/t2 - A,)].

Using this distance, an intermediate heading
angle H in degrees is determined as

H =cos"
sinLj -sin I, -cos

r J\

V60y

sin — -cosL,
60j H

Based on the geometry of the coordinates,

this intermediate heading angle is adjusted
to obtain the initial true heading 0,y,
measured in degrees from true north, i.e.,

_\H, sin(A2-A,)<0
M'7 [360°-//, sinU2-A,)>0'

This distance and bearing geometry is
shown in Figure 5.

(£,,>.,)

<l2.*,)

Figure 5. Distance and Bearing Geometry (Spherical Triangle)

Wind Effects on Ground Speed

When computing transit times
between locations, we must account for the
effect of winds aloft. Given a wind speed
WS from a bearing of Qws measured in
degrees from true north, one can calculate
the effective ground speed GS along the true
course 0,y from the first location to the
second. The difference between 0,y and ®ws
is represented by 8. Figure 6 illustrates this
geometry. When I 8 I < 90, A is negative and
subtracts from the airspeed as a headwind
component. When 90 < I 8 I < 180, A is
positive and adds to the airspeed as a

tailwind component. The wind correction
angle from true heading is denoted by y.
This adjusted heading corrects the flight
path to compensate for wind drift.
Groundspeed, as influenced by wind aloft, is
explicitly calculated as

A = WS -cos(180-£)
C = WS -sin(l 80 -S)

B = JAS2-C2

and

GS = A +B = WS ■ cos(lS0-S) + -yJAS2-WS2-sin2(ISO-5)

11

The transit time between the points is then
simply t{j = dy /GS .

Headwind Effect (GS < AS)

©,

Tailwind Effect (GS > AS)

GS

Figure 6. Headwind and Tailwind Ground Speed Adjustment

Numerical Formatting

The latitude L and longitude X
information is measured in degrees where
one degree is composed of sixty minutes and
one minute is composed of sixty seconds.
The are values often listed in a degrees
minutes seconds format (DD MM SS.ss); we
convert latitudes and longitudes into a
decimal degree format for computational
ease using the formula

D.d = DD + MM 160 + SS.ss/3600.

Locations can also be listed in a degrees
minutes decimal minutes format {DD
MM.mm) where minutes are expressed as

decimal values. Conversion to a decimal
degree value is defined as

D.d = DD + MM.mm/60.

Clock time is often expressed in a
military-style hours minutes (HH MM)
format; for computational ease, we express
time in minutes tminutes as

tminMes = 60-HH+MM

Objective Function Modifications

The UAV operating environment
also mandates changes to the objective
function. The standard VRPTW objective
function seeks to minimize travel costs as

12

represented by the distance traveled. Early
arrival to a customer is allowed, and the
resulting waiting time is cost free in the
objective function. This may be appropriate
for a standard terrestrial application in which
the costs are associated mainly with
transiting between locations, but in UAV
operations there are costs associated with
keeping the aircraft airborne. Thus, UAV
waiting times represent costs that must be
considered in our efforts to minimize the
objective function. We therefore modify the
original and penalized objective functions (
1) and (2) to include waiting time w,- at
node i in addition to the original transit
times as

Dynamic Mission Requirements

The nature of UAV employment
presents unique situations that our routing
tool must handle. As such, we show how
our scenarios depart from traditional VRPs
and explain how we successfully implement
these requirements. Unique routing
situations exist with regard to altitude-based
wind tiers, random service times, emerging
priority targets, and locked route sequences.
These instances are explored in the
following paragraphs.

Optimizing Use of Altitude-Based Wind
Tiers

minimize Z'f (0 = Z Z (cu + w> \
i i

As before, the penalized objective function
is gained by adding the scaled infeasibility
values to yield

minimize Z'(t)= Z'f (t)+pLDLD + pmTW .

The search now attempts to minimize the
total time aloft and proceeds as previously
presented.

Recall that in the general MTSPTW
problem, travel times between fixed
locations are known, with fixed and
symmetric costs (i.e., cij=cji). This

symmetry does not hold in the UAV
operating environment where winds affect
travel times and can vary both in direction
and velocity as a function of altitude
(depicted below in Figure 7). We
incorporate this wind information to select
the minimum travel time between nodes.

18,000 '

10,000'

5,000'

,,*T'2.,.P00 '
 ~~- ~*~" e

Figure 7. Typical Winds Aloft Profile

Specifically in any altitude band k,
travel time is a function of UAV altitude hiJk

and airspeed ASk; wind speed WSk and

direction &WSk; and the distance d-tj and

bearing Q^ between locations. We make

the simplifying assumption that wind

13

direction and speed is constant throughout
an entire altitude zone. This is reasonable
since values at any point in the region are
interpolated predictions based on
measurements of actual conditions at
discrete weather station locations (Parsons
1999).

Using our previous equations, we
calculate times between all locations based
on the adjusted ground speed for each
altitude band. This forms tiers of
asymmetric wind-influenced travel time
matrices from which we select the smallest
travel time from i toy as

t:i - nun
1 V k GS^)

where GS^Qi^) the ground speed as a

function of traveling in altitude band k. The
corresponding altitude is assigned as our
flight altitude for that leg. Since this wind
optimization process is accomplished prior
to beginning the tabu search, the heuristic
will accept an arbitrary number of altitude

bands with no appreciable effect on
computational time or efficiency.

Random Service Times

In the general TSPTW problem,
customer service times are known constants.
In the UAV problem context, the target
service times are random variables. The
service time represents the amount of time
the aircraft spends circumnavigating the
target point to gather imagery from multiple
viewpoints, and, due to the unknown nature
of the target, military necessity may dictate a
longer observation than initially planned.
The actual target i service time 5, falls

between the minimum service time smjn{i)

and the maximum service time smax(i)

inclusive. Service time will be the minimum
service time with 0.7 probability; when the
time is above the minimum, it is modeled as
uniformly distributed between the minimum
and maximum. The service time is given by

S:
\smin{i) with 0.7 probability

[Uniform(5m,„(f),5mav(/)) with 0.3 probability

A known service time is simply specified by
setting 5; =smin{i)=smax{i).

Emerging Targets

Another aspect of UAV operations is
the pop-up priority target. This occurs when
the UAV is retasked in flight to observe a
target of utmost military urgency.
Depending on the new target location, this
immediate divert may render the remainder
of the route obsolete. Rather than proceed

with a potentially sub-optimal route, our
solver offers the ability to route-from-here.

Given that the UAV will proceed to
the ad hoc target, this location becomes a
new starting point and the remaining targets
are processed in a route that returns the
UAV to the depot. This route-from-here
capability is achieved with smart processing
of the time matrix.

Locked and Forbidden Routes

14

At times, UAV operations require a
locked route, in which one or more targets
must be visited in a specific order. This may
occur with a directed route or with certain
observational requirements such as a
consecutive imaging pass for a synthetic
aperture radar image. The GUI allows these
route points to be locked together and
treated as an aggregated node with a
beginning location corresponding to the first
point and an ending location corresponding
to the last point. The aggregated node is
assigned a composite service time that

accounts for intra-node service, wait, and
travel times.

The opposite of a locked route is a
forbidden route which may be a result of a
no-fly zone or threat region. The forbidden
area is then monitored for flight paths which
pass through it; if a path intersects a
forbidden area, it is modeled as a longer
route that skirts the edge of the region as
shown in Figure 8.

Initial Fobidden Resultant
Route Route Around

/ No \
/ Fiy \

/ Region \

Figure 8. Forbidden Route Example

COMPUTATIONAL RESULTS

General Results

Our initial testing and validation
used the Solomon VRPTW problem test
sets—25, 50, and 100 customer scenarios
with random, clustered and random
clustered distribution patterns. Our
computational results are compared in
Tables 1-6 (Ryer 1999) to known optimal
answers obtained by Desrochers, Desrosiers,
and Solomon (1992). Dashed regions of the
chart indicate problems that could not be
optimally solved by Desrochers et al. All
problems were solved in reasonable
computation times by our RTS algorithm

(2500 iterations with user specified
penalties) with an overall solution quality
within 1% of optimal values. Solving the
harder VRPTW class problems did not
require an increase in computation times
over the mTSPTW class problems.

The objective function value used in
these initial tests includes travel time,
missed time window penalties, and load
overage penalties. With a relatively small
amount of coding, the objective function can
be expanded to include additional penalties,
changed to represent several different
weighted objective functions, or combined
in a hierarchical objective function. Results
are presented in Tables 1 through 6.

15

Table 1. Solomon mTSPTW Computational Results (25 Customers)

Problem O'Rourke & Rver Optimal Difference
A A%

Start
Set' Z,(t) Used Iter2 Time3 Z,(t) Used Time Method5

R101 867.1 8 317 3 867.1 8 5.8 0.0 0.00% OST
R102 797.1 7 35 1 797.1 7 20.3 0.0 0.00% OST
R103 704.6 5 132 1 704.6 5 22.2 0.0 0.00% OST
R104 666.9 4 86 1 666.9 4 46.0 0.0 0.00% OST
R105 780.5 6 95 1 780.5 6 22.6 0.0 0.00% OST
R106 715.4 5 28 0 715.4 5 205.2 0.0 0.00% RST0
R107 674.3 4 2080 23 674.3 4 304.1 0.0 0.00% RST2
R108 647.3 4 45 0 647.3 4 307.4 0.0 0.00% OST
R109 691.3 5 21 0 691.3 5 14.4 0.0 0.00% OST
R110 694.1 5 91 2 679.8 4 64.3 14.3 2.10% RST0
Rill 678.8 4 178 2 678.8 4 330.3 0.0 0.00% RST0
R112 643.0 4 25 0 643.0 4 623.3 0.0 0.00% LOT

C101 2441.3 3 23 0 2441.3 3 18.6 0.0 0.00% OST
C102 2440.3 3 379 4 2440.3 3 79.9 0.0 0.00% LOT
C103 2440.3 3 72 1 2440.3 3 134.7 0.0 0.00% OST
C104 2436.9 3 797 8 2436.9 3 223.9 0.0 0.00% OST
C105 2441.3 3 209 2 2441.3 3 25.6 0.0 0.00% OST
C106 2441.3 3 26 1 2441.3 3 20.7 0.0 0.00% OST
C107 2441.3 3 28 1 2441.3 3 31.7 0.0 0.00% OST
C108 2441.3 3 1421 15 2441.3 3 43.1 0.0 0.00% OST
C109 2441.3 3 148 1 2441.3 3 585.4 0.0 0.00% OST

RC101 711.1 4 214 3 711.1 4 225.4 0.0 0.00% LOT
RC102 601.7 3 20 1 596.0 3 18.1 5.7 0.96% OST
RC103 582.8 3 2193 24 582.8 3 103.0 0.0 0.00% RST2
RC104 556.6 3 604 6 556.6 3 177.9 0.0 0.00% OST
RC105 661.2 4 79 1 661.2 4 37.4 0.0 0.00% RST1
RC106 595.5 3 60 1 595.5 3 248.4 0.0 0.00% RST1
RC107 548.3 3 69 1 548.3 3 113.9 0.0 0.00% RST0
RC108 544.5 3 2203 23 544.5 3 256.0 0.0 0.00% OST

Average 1218.19 3.93 402.7 4.38 1184.8 3.90 148.6 0.69 0.11% —

(Ryer 1999)

Maximum number of vehicles: m=10. Time window penalty: pnv =1.0.
Maximum iterations: k - 2500.
Seconds on a Pentium II400 MHz system. Total runtime - 28 seconds each.
Seconds on a Sun Sparc 1 workstation.
OST is ordered starting tour. RST is random starting tour seeded with the value given. LOT is listed ordering.

16

Table 2. Solomon mTSPTW Computational Results (50 Customers)

Problem O'Rourke & Rver Optimal Difference Start
Set' Z,(t) Used Iter2 Time3 Z,(t) Used Time4 A A% Method5

R101
R102
R103
R104
R105
R106
R107
R108
R109
R110
Rill
R112

1543.8
1409.0
1282.7
1131.9
1401.6
1293.0
1211.1
1117.7
1286.7
1207.8
1216.6
1140.5

12
11
9
6
9
8
7
6
8
7
7
6

239
1939
871
734
402

2294
1786
1698
1452
1853
1775
1784

9
78
36
31
15
94
75
75
58
78
72
78

1535.2
1404.6
1272.5

1399.2
1285.2
1211.1

1197.0

12
11
9

66.7
67.8

8939.1

362.6
386.4

7362.1

4906.1

8.6 0.56%
4.4 0.31%

10.2 0.80%

2.4 0.17%
7.8 0.61%
0.0 0.00%

10.8 0.90%

RST0
RSTO
OST
RSTO
LOT
RST1
RSTO
RSTO
RSTO
RST1
RST2
RST2

C101
C102
C103
C104
C105
C106
C107
C108
C109

4862.4
4861.4
4855.8
4884.1
4861.2
4862.4
4861.2
4861.2
4860.9

119
607

1699
1253
232
308
382
92

301

4
19
57
43

7
9

12
3
9

4862.4
4861.4

4862.4

67.1
330.2

91.3

0.0
0.0

0.00%
0.00%

0.0 0.00%

LOT
LOT
OST
LOT
OST
LOT
LOT
LOT
OST

RC101
RC102
RC103
RC104
RC105
RC106
RC107
RC108

1444.0
1325.1
1216.2
1046.5
1355.3
1223.2
1146.0
1098.1

1252
754

1589
860
248

1921
189

1821

38
23
54
31

8
61

7
65

RST1
RST1
RSTO
RST2
OST
RST2
LOT
OST

Average 2374.7 6.66 1050 39.6

Maximum number of vehicles: R sets m = 15; C sets m = 6; RC sets m = 8. Time window penalty: pr\v = 3.0.
2 Maximum iterations: k = 2500.
3 Seconds on a Pentium II400 MHz system. Total runtime - 100 seconds each.

Seconds on a Sun Sparc 1 workstation.
OST is ordered starting tour. RST is random starting tour seeded with the value given. LOT is listed ordering.

(Ryer 1999)

17

Table 3. Solomon mTSPTW Computational Results (100 Customers)

Problem O'Rourke & Rver Optimal Difference
A A%

Start
Set1 Z,(t) Used Iter2 Time3 Z,(t) Used Time4 Method5

R101 2689.6 20 2167 371 2607.7 18 1064.2 81.9 3.14% RSTO
R102 2522.9 18 1783 322 2434.0 17 756.9 88.9 3.65% RSTO
R103 2266.8 15 1797 351 — — — — — RST2
R104 2010.6 11 1401 311 — — — — — RST2
R105 2418.0 16 560 93 — — — — — RST1
R106 2256.9 14 1403 252 — — — — — LOT
R107 2091.6 12 1462 278 — — — — — LOT
R108 1980.3 10 2325 491 — — — — — RSTO
R109 2191.4 13 2149 398 — — — — — RST1
R110 2121.1 12 1479 291 — — — — — RST2
Rill 2082.1 12 1882 370 — — — — — RST2
R112 1986.1 11 2325 507 — — — — — RST1

C101 9827.3 10 285 45 9827.3 10 434.5 0.0 0.00% OST
C102 9820.3 10 237 42 — —■ — — — OST
C103 9813.7 10 256 49 — — — — — OST
C104 9809.0 10 2495 536 — — — — — RST2
C105 9821.2 10 313 50 — — — — — OST
C106 9827.3 10 455 75 9827.3 10 724.8 0.0 0.00% OST
C107 9818.9 10 292 48 — — — — — OST
C108 9818.9 10 662 115 — — — — — OST
C109 9818.6 10 1381 262 — — — — — LOT

RC101 2685.7 16 897 144 OST
RC102 2534.0 15 2410 434 — — — — — OST
RC103 2352.3 13 1047 195 — — — — — RSTO
RC104 2209.1 11 1311 272 — — — ■— — RST2
RC105 2538.0 15 2327 412 — — — — — RST1
RC106 2457.8 14 443 74 — — — — — RSTO
RC107 2236.9 12 1822 344 — — — — — RSTO
RC108 2115.9 11 2206 451 — — — — — RST1

Average 4624.9 12.45 1365 261.48 — — — — — —

(Ryer 1999)

Maximum number of vehicles: m = 25. Time window penalty: pnv = 8.0.
Maximum iterations: k = 2500.
Seconds on a Pentium II 400 MHz system. Total runtime - 550 seconds each.
Seconds on a Sun Sparc 1 workstation.
OST is ordered starting tour. RST is random starting tour seeded with the value given. LOT is listed ordering.

18

Table 4. Solomon VRPTW Computational Results (25 Customers)

Problem O'Rourke & Rver Optimal Difference
A A%

Start
Set1 Z,(t) Used Iter2 Time3 Z,(t) Used Time4 Method5

R101 867.1 8 317 4 867.1 8 5.8 0.0 0.00% OST
R102 797.1 7 35 1 797.1 7 20.3 0.0 0.00% OST
R103 704.6 5 132 1 704.6 5 22.2 0.0 0.00% OST
R104 666.9 4 86 2 666.9 4 46.0 0.0 0.00% OST
R105 780.5 6 95 1 780.5 6 22.6 0.0 0.00% OST
R106 715.4 5 1149 12 715.4 5 205.2 0.0 0.00% RST0
R107 674.3 4 2080 24 674.3 4 304.1 0.0 0.00% RST2
R108 647.3 4 58 1 647.3 4 307.4 0.0 0.00% OST
R109 691.3 5 32 1 691.3 5 14.4 0.0 0.00% OST
R110 694.1 5 91 1 679.8 4 64.3 14.3 2.10% RST0
Rill 678.8 4 178 3 678.8 4 330 0.0 0.00% RSTO
R112 643.0 4 25 1 643.0 4 623.3 0.0 0.00% LOT

C101 2441.3 3 23 0 2441.3 3 18.6 0.0 0.00% OST
C102 2440.3 3 106 1 2440.3 3 79.9 0.0 0.00% LOT
C103 2440.3 3 72 1 2440.3 3 134.7 0.0 0.00% OST
C104 2436.9 3 741 8 2436.9 3 223.9 0.0 0.00% OST
C105 2441.3 3 170 1 2441.3 3 25.6 0.0 0.00% OST
C106 2441.3 3 35 1 2441.3 3 20.7 0.0 0.00% OST
C107 2441.3 3 51 0 2441.3 3 31.7 0.0 0.00% OST
C108 2441.3 3 455 4 2441.3 3 43.1 0.0 0.00% OST
C109 2441.3 3 197 2 2441.3 3 585.4 0.0 0.00% OST

RC101 711.1 4 214 2 711.1 4 225.4 0.0 0.00% LOT
RC102 601.7 3 149 1 596.0 3 18.1 5.7 0.96% OST
RC103 582.8 3 134 2 582.8 3 103.0 0.0 0.00% RST2
RC104 556.6 3 29 1 556.6 3 177.9 0.0 0.00% LOT
RC105 661.2 4 24 1 661.2 4 37.4 0.0 0.00% RST1
RC106 595.5 3 60 1 595.5 3 248.4 0.0 0.00% RST1
RC107 548.3 3 179 2 548.3 3 113.9 0.0 0.00% RST1
RC108 544.5 3 353 3 544.5 3 256.0 0.0 0.00% LOT

Average 1218.2 3.93 250.7 2.86 1184.8 3.90 148.6 0.69 0.11% LOT

(Ryer 1999)

Maximum number of vehicles: m=10. Time window penalty: pnv = 8.0; load penalty pw =10.0.
Maximum iterations: k = 2500.
Seconds on a Pentium II 400 MHz system. Total runtime - 28 seconds each.
Seconds on a Sun Sparc 1 workstation.
OST is ordered starting tour. RST is random starting tour seeded with the value given. LOT is listed ordering.

19

Table 5. Solomon VRPTW Computational Results (50 Customers)

Problem O'Rourke & Rver Optimal Difference
A A%

Start
Set' Z,(t) Used Iter2 Time3 Z,(t) Used Time4 Method5

R101 1543.8 12 239 9 1535.2 12 66.7 8.6 0.56% RSTO
R102 1409.0 11 1939 82 1404.6 11 67.8 4.4 0.31% RSTO
R103 1278.7 9 1935 87 1272.5 9 8939.1 6.2 0.49% OST
R104 1137.4 6 1533 69 — — — — — RST2
R105 1401.6 9 402 16 1399.2 9 362.6 2.4 0.17% LOT
R106 1293.0 8 2294 99 1285.2 8 386.4 7.8 0.61% RST1
R107 1211.1 7 1786 79 1211.1 7 7362.1 0.0 0.00% RSTO
R108 1117.7 6 1698 78 — — — —• — RSTO
R109 1286.7 8 1451 61 —. — — — — RSTO
R110 1207.8 7 1853 84 1197.0 7 4906.1 10.8 0.90% RST1
Rill 1216.6 7 1775 76 — — — — — RST2
R112 1135.0 6 1456 68 — — — — — RST2

C101 4862.4 5 74 3 4862.4 5 67.1 0.0 0.00% LOT
C102 4861.4 5 232 9 4861.4 5 330.2 0.0 0.00% LOT
C103 4861.4 5 2035 87 4861.4 5 896.0 0.0 0.00% RSTO
C104 4882.8 5 1727 79 — — — — — RSTO
C105 4862.4 5 494 19 4862.4 5 99.1 0.0 0.00% OST
C106 4862.4 5 91 4 4862.4 5 91.3 0.0 0.00% LOT
C107 4862.4 5 154 6 4862.4 5 170.6 0.0 0.00% LOT
C108 4862.4 5 95 4 4862.4 5 245.6 0.0 0.00% LOT
C109 4862.4 5 643 26 — — — — — OST

RC101 1446.8 8 1613 60 OST
RC102 1331.8 7 1508 60 — — — — — RST2
RC103 1210.9 6 2194 94 — — — — — OST
RC104 1046.5 5 412 18 — — — — — LOT
RC105 1355.3 8 104 4 •— — — — — OST
RC106 1223.2 6 1454 58 — — — — — RST2
RC107 1144.4 6 898 36 — — — — — RST1
RC108 1098.1 6 1361 58 — — — — — OST

Average 2375.01 6.66 1153 49.4 — — — — — —

(Ryer 1999)

Maximum number of vehicles: m=15. Time window penalty: prw = 1.0; load penalty pio =10.0.
Maximum iterations k = 2500.
Seconds on a Pentium II400 MHz system. Total runtime - 100 seconds each.
Seconds on a Sun Sparc 1 workstation.
OST is ordered starting tour. RST is random starting tour seeded with the value given. LOT is listed ordering.

20

Table 6. Solomon VRPTW Computational Results (100 Customers)

Problem O'Rourke & Rver Optimal Difference
A A%

Start
Set' Z,{t) Used Iter2 Time3 Z,(0 Used Time4 Method3

R101 2676.2 20 2271 414 2607.7 18 1064.2 68.5 2.63% RST2
R102 2502.4 19 492 96 2434.0 17 756.9 68.4 2.81% RSTO
R103 2265.0 15 1091 228 — — — — — RST2
R104 2039.6 12 1488 338 — — — — — OST
R105 2399.4 16 1974 378 — — — — — RSTO
R106 2268.4 14 2431 491 — — — — — LOT
R107 2129.0 13 1905 406 — — — — — RST1
R108 1956.8 10 2415 565 — — — —. — RSTO
R109 2181.0 14 1587 311 — — — — — RST1
R110 2133.2 13 1548 328 — — — — — RST2
Rill 2077.3 12 2248 491 — — — — — RST2
R112 1971.6 11 1898 460 — — — — — RST2

C101 9827.3 10 263 43 9827.3 10 434.5 0.0 0.00% OST
C102 9827.3 10 1317 253 9827.3 10 1990.8 0.0 0.00% OST
C103 9828.9 10 2500 535 — — — — —. RSTO
C104 9949.6 10 2194 509 — — — — — RST2
C105 9827.3 10 378 65 — — — — — OST
C106 9827.3 10 309 55 9827.3 10 724.8 0.0 0.00% OST
C107 9827.3 10 1144 210 9827.3 10 1010.4 0.0 0.00% OST
C108 9827.3 10 1638 321 9827.3 10 1613.6 0.0 0.00% OST
C109 9853.3 10 2202 463 — — — — — RSTO

RC101 2669.9 16 2110 381 OST
RC102 2498.4 15 2136 419 — — — — — LOT
RC103 2363.6 13 1333 270 — •— — — — RST1
RC104 2179.2 11 1365 308 — — — — — LOT
RC105 2557.4 15 2482 473 — — — — — OST
RC106 2432.8 13 2222 434 — — — — — RST2
RC107 2266.1 12 2024 417 — — — — — RST2
RC108 2175.1 12 2122 475 — — — — — RST 1

Average 4632.3 12.62 1693 349.6 — — — — — —

(Ryer 1999)

Maximum number of vehicles: m = 25. Time window penalty: pnv = 8.0; load penalty pLD =10.0.
Maximum iterations k = 2500.
Seconds on a Pentium II 400 MHz system. Total runtime - 550 seconds each.
Seconds on a Sun Sparc 1 workstation.
OST is ordered starting tour. RST is random starting tour seeded with the value given. LOT is listed ordering.

21

UAV Results

We analyzed a Bosnia UAV scenario
provided by Bergdahl (1998). Winds for the

region of interest are given in Table 7.
These winds are taken from actual US Air
Force meteorological conditions for the
operating region.

Altitude
Tier

0
1
2

Table 7. Wind Data

Altitude
(ft) (deg)

WS
(kts)

5,000
10,000
18,000

300
300
310

7.5
37.5
50.0

AS
(kts)

70
70
70

Scenario details are listed in Table 8, and a
map of this scenario is provided in Figure 9.
The 52 targets fall into three remote
operating zones (ROZs), each with non-
overlapping time windows. Route
optimization begins and ends with the Srbac,
Bosnia waypoint, since the route to and from
there must follow a mandatory air corridor.

The scenario was solved in 108
seconds on a Pentium II 300 MHz system
using the UAV specific module of the
heuristic. With optimum use of wind tiers,
the solver returned a tour requiring only one
vehicle with a mission time of 822 minutes.
Without wind tier modeling, two vehicles
are required with a combined mission time
of 1384 minutes. This demonstrates the
improvement that can be achieved with
smart selection of travel altitudes.

The optimized tour output is listed in
Table 9 (the "Alt" column designates the
altitude tier to be used enroute to the next
target); this flight path is shown in Figures
Figure 10 and Figure 11. Figure 11 shows
the same sequence as Figure 10 with a
temporal component as the added third axis
and gray bars representing the time
windows.

CONCLUSIONS

Our Java implementation of a
reactive tabu search first described by Battiti
and Tecchiolli (1994) successfully solves
single/multiple traveling salesman problems
with and without time windows (TSP,
MTSP,TSPTW, MTSPTW), as well as
capacitated vehicle routing problems with
and without time windows (VRP, VRPTW).
On the Solomon problem sets, our heuristic
produces close to optimal solutions within
reasonable computing times. Addition of
reactive penalties allows the algorithm to
perform more robustly over a wider set of
problems.

Our implementation supports UAV
problems and formats as well as classical
problems and formats. Changes required for
the UAV problem reflect unique aspects of
the operational UAV mission and include
items such as a reformulated objective
function, alternate coordinate and numerical
formatting, and random customer service
times. The introduction of altitude-based
wind tiers, when selecting UAV routes,
capitalizes on the altitude-dependent, highly
asymmetric nature of the flight environment.

The Java implementation is an object
oriented structure that is both machine

22

portable and readily modifiable to support
new problem instances. The internal data
structure and methodology work with the
GUI to support operational requirements
such as route locking and dynamic
rescheduling in support of priority targets.

We present several ideas that
represent natural and worthwhile extensions
to the work accomplished.

Heuristic Modifications

Modifications to the tabu search
heuristic could include any of the following
ideas. Additional operators have increased
solution quality for genetic algorithms
(Petridis et al. 1998); construction and
implementation of additional operators may
prove useful. These operators could
consider additional random or directed
moves which expand the neighborhood,
such as a 4-opt, for possible improvements
in the objective function.

Restarts based on changes in the
solution quality or stabilization of the
objective function could prove useful.
Methods to consider include the following:
maintenance of an elite list of best solutions
where a restart resumes with relaxed tabu
restrictions (Xu and Kelly 1996);
intensification from previous location with
stored tabu status (Armentano and Ronconi
1999); or a multi-start backjwnp tracking
scheme (Liaw 1999, Norwicki and
Smutnicki 1996). Other initialization
methods such as a sweep initialization or
petal initialization (Renaud 1996b) could be
explored.

UAV Related Modifications

Changes to the UAV specific aspect
of the problem could include a priority
scheme hierarchy that generates route
segments based on assigned target priorities.
This would involve constructing subtours

that are then smartly linked together—
obviously, the parameters of one subtour
will be highly dependent on the others. The
rudimentary wind modeling (discrete levels
and average regional values) could be
replaced with wind values that correlate
specifically to each leg. A more detailed
modeling of actual UAV transition times
between altitudes, with modeled climb rates
would provide a higher fidelity mission
profile. The service times distribution
model, which is still rather unknown, could
be updated to reflect data gathered from
recent operations.

Java Code Modifications

Although we are not strict computer
programmers, work was done in an attempt
to improve the code for better heuristic
performance. This includes items such as
ordering logic comparisons (so that the most
likely outcome is encountered first to reduce
comparisons) and changing several methods
(to decrease instantiations). These
optimization modifications reduced the run
time for the 100 customer, 25 vehicle
Solomon problem sets from an average of
700 seconds to 550 seconds. While this
represents about a 25% reduction in run
time, there is still tremendous room for
improvement due to excessive object
copying.

With any Java non-primitive type,
the statement "x = y" will cause the "x"
label to point to the "y" object, and the
previous "x" object (if any) will be lost.
What remains is the "y" object with both an
"x" label and a "y" label. In order to have a
separate "x" object that is the same as the
"y" object, an explicit copy or clone
function must be used to duplicate the object
(Flanagan 1997). This duplication is an
expensive operation, as it instantiates a new
object and copies the member data.
Analysis of the current reactive tabu

23

heuristic with the KL Group's JProbe™ Java
profiler tool revealed that nearly 50% of the
run time is spent copying NodeType objects.
Initial experimentation using an index
system as node pointers showed potential
run times that are only 20% of the current
run time—100 customer, 25 vehicle
Solomon sets ran in -120 seconds versus the
current -550 seconds. This speed increase
results from copying and manipulating the
indices, which are Java primitive types,

instead of copying and manipulating the
NodeType objects.

Some initial work was done in an
attempt to reconfigure the heuristic to run
using indices, but the changes are substantial
as they touch nearly every aspect of the
program. Future programming efforts
should make the conversion, which will
allow faster solutions and larger problem
sets.

24

Table 8. Bosnia Data Set

Location Name Lat (DD MM SS) Lon (DD MM SS) 1
e-, I ,■' WiV JmaxOy

DepotTazarHungary N 46 24 0 E 17 54 0
CorridorSzulokHungary N 46 3 45 E 17 32 44

CorridorSrbacBosnia* N 45 24 0 E 17 30 0 940 4800 0 0
Dumdvga N 44 58 29 E 16 50 34 1015 1500 30 180
Mastye N 44 58 46 E 16 38 56 1015 1500 30 180
AAASiteGarred N 44 58 4 E 16 39 31 1015 1500 2 15
HvyWpnDepTharmet N 44 58 33 E 16 39 18 1015 1500 2 30
HvyWpnDepTharmet N 44 58 39 E 16 39 41 1015 1500 2 30
HvyWpnDepTharmet N 44 58 59 E 16 39 28 1015 1500 2 30
CommSiteSardona N 44 59 2 E 16 39 56 1015 1500 2 30
CommSiteSardona N 44 59 11 E 16 40 19 1015 1500 2 30
CommSiteSardona N 44 59 15 E 16 39 20 1015 1500 2 30
SuspWpnStorage N 44 59 9 E 16 39 10 1015 1500 2 30
SuspWpnStorage N 44 54 52 E 16 34 47 1015 1500 2 30
SuspWpnStorage N 44 51 49 E 16 41 37 1015 1500 2 30
SuspWpnStorage N 45 0 7 E 16 34 47 1015 1500 2 30
SuspWpnStorage N 44 59 9 E 16 49 17 1015 1500 2 30
SuspWpnStorage N 44 57 41 E 16 39 35 1015 1500 2 30
SAMIADSiteProbSA2 N 44 57 23 E 16 51 45 1015 1500 2 30
SAMIADSiteProbSA2 N 44 57 45 E 16 49 28 1015 1500 2 30
SAMIADSiteProbSA2 N 44 55 57 E 16 43 52 1015 1500 2 30
SAMIADSiteSiteRadar N 44 57 47 E 16 39 54 1015 1500 2 30
HQSiteDromada N 45 0 7 E 16 53 49 1015 1500 30 120
WarehouseDromada N 44 53 31 E 16 54 12 1015 1500 2 60
BarracksOmanski N 44 45 34 E 17 10 34 1500 1715 5 120
BarracksOmanski N 44 48 19 E 17 12 14 1500 1715 5 120
BarracksOmanski N 44 51 2 E 17 13 24 1500 1715 5 120
TankRallyPointBolstavec N 44 50 51 E 17 14 39 1500 1715 2 30
TankRallyPointBolstavec N 44 56 17 E 17 17 41 1500 1715 2 30
StorageBunkerKrajachastane N 44 55 51 E 17 17 51 1500 1715 2 30
StorageBunkerKrajachastane N 44 56 7 E 17 18 23 1500 1715 2 30
RoadGolprtuniy N 44 28 13 E 17 1 18 1730 1830 20 40
RoadGolprtuniy N 44 27 29 E 17 1 46 1730 1830 20 40
RoadGolprtuniy N 44 27 10 E 17 2 24 1730 1830 20 40
Dumdvga N 44 58 29 E 16 50 34 1900 2300 30 180
Mastye N 44 58 46 E 16 38 56 1900 2300 30 180
AAASiteGarred N 44 58 4 E 16 39 31 1900 2300 2 15
HvyWpnDepTharmet N 44 58 33 E 16 39 18 1900 2300 2 30
HvyWpnDepTharmet N 44 58 39 E 16 39 41 1900 2300 2 30
HvyWpnDepTharmet N 44 58 59 E 16 39 28 1900 2300 2 30
CommSiteSardona N 44 59 2 E 16 39 56 1900 2300 2 30
CommSiteSardona N 44 59 11 E 16 40 19 1900 2300 2 30
CommSiteSardona N 44 59 15 E 16 39 20 1900 2300 2 30
SuspWpnStorage N 44 59 9 E 16 39 10 1900 2300 2 30
SuspWpnStorage N 44 54 52 E 16 34 47 1900 2300 2 30
SuspWpnStorage N 44 51 49 E 16 41 37 1900 2300 2 30
SuspWpnStorage N 45 0 7 E 16 34 47 1900 2300 2 30
SuspWpnStorage N 44 59 9 E 16 49 17 1900 2300 2 30
SuspWpnStorage N 44 57 41 E 16 39 35 1900 2300 2 30
SAMIADSiteProbSAl N 44 57 23 E 16 51 45 1900 2300 2 30
SAMIADSiteProbSA2 N 44 57 45 E 16 49 28 1900 2300 2 30
SAMIADSiteProbSA2 N 44 55 57 E 16 43 52 1900 2300 2 30
SAMIADSiteSiteRadar N 44 57 47 E 16 39 54 1900 2300 2 30
HQSiteDromada N 45 0 7 E 16 53 49 1900 2300 30 120
WarehouseDromada N 44 53 31 E 16 54 12 1900 2300 2 60
CorridorSrbacBosnia N 45 24 0 E 17 30 0 940 4740 0 0

DepotTazarHungary N 46 24 0 E 17 54 0
CorridorSzulokHungary N 46 3 45 E 17 32 44

1 Time listed in hours-minutes format.
2 Minutes.
* Optimization begins from Srbac Corridor waypoint

(Bergdahl 1998)

25

Figure 9. Bosnia Scenario Target Locations

26

Table 9. Bosnia Tour Sequence

Label ID Lat^ Long'1 Early4 Late4 Arr4 Dep4 Serv4 Air3

CorridorSrbacBosnia 0 45.1166 -17.5416 580 2880 580.00 580.00 0 0
HQSiteDromada 20 45.0019 -16.8969 615 900 606.25 615.00 30 0
SAMIADSiteProbSA2 16 44.9563 -16.8625 615 900 647.66 647.66 2 0
Dumdvga 1 44.9747 -16.8427 615 900 650.97 650.97 125 0
SuspWpnStorage 14 44.9858 -16.8213 615 900 778.02 778.02 2 2
SAMIADSiteProbSA2 17 44.9625 -16.8244 615 900 780.89 780.89 2 0
SAMIADSiteProbSA2 IS 44.9325 -16.7311 615 900 786.88 786.88 2 0
CommSiteSardona 8 44.9863 -16.6719 615 900 792.77 792.77 2 0
CommSiteSardona 7 44.9838 -16.6655 615 900 795.05 795.05 2 0
CommSiteSardona 9 44.9875 -16.6555 615 900 797.50 797.50 6 0
SuspWpnStorage 10 44.9858 -16.6527 615 900 804.11 804.11 3 2
HvyWpnDepTharmet 6 44.983 -16.6577 615 900 807.86 807.86 2 2
HvyWpnDepTharmet 5 44.9775 -16.6613 615 900 810.05 810.05 2 2
SAMIADSiteSiteRadar 19 44.963 -16.665 615 900 812.57 812.57 2 0
SuspWpnStorage 15 44.9613 -16.6597 615 900 814.79 814.79 2 0
AAASiteGarred 3 44.9677 -16.6586 615 900 817.14 817.14 2 0
HvyWpnDepTharmet 4 44.9758 -16.6549 615 900 819.61 819.61 2 0
Mastye 2 44.9794 -16.6488 615 900 821.93 821.93 30 0
SuspWpnStorage 13 45.0019 -16.5797 615 900 855.02 855.02 19 2
SuspWpnStorage 11 44.9144 -16.5797 615 900 878.36 878.36 2 2
SuspWpnStorage 12 44.8636 -16.6936 615 900 883.24 883.24 2 1
WarehouseDromada 21 44.8919 -16.9033 615 900 891.03 891.03 2 1
TankRallyPointBolstavec 26 44.938 -17.2947 900 1035 903.71 903.71 2 2
S torageB unkerKraj achastane 28 44.9352 -17.3063 900 1035 905.98 905.98 15 0
StorageBunkerKrajachastane 27 44.9308 -17.2975 900 1035 921.88 921.88 2 0
TankRallyPointBolstavec 25 44.8475 -17.2441 900 1035 928.56 928.56 2 0
BarracksOmanski 24 44.8505 -17.2233 900 1035 931.42 931.42 15 2
BarracksOmanski 23 44.8052 -17.2038 900 1035 949.23 949.23 5 0
BarracksOmanski 22 44.7594 -17.1761 900 1035 956.77 956.77 5 2
RoadGolprtuniy 31 44.4527 -17.04 1050 1110 977.93 1050.00 20 0
RoadGolprtuniy 30 44.458 -17.0294 1050 1110 1070.52 1070.52 20 0
RoadGolprtuniy 29 44.4702 -17.0216 1050 1110 1091.27 1091.27 22 0
SuspWpnStorage 43 44.8636 -16.6936 1140 1380 1139.59 1140.00 13 0
SuspWpnStorage 42 44.9144 -16.5797 1140 1380 1159.13 1159.13 2 0
SuspWpnStorage 44 45.0019 -16.5797 1140 1380 1165.90 1165.90 2 2
Mastye 33 44.9794 -16.6488 1140 1380 1169.55 1169.55 30 0
SuspWpnStorage 41 44.9858 -16.6527 1140 1380 1199.91 1199.91 24 0
CommSiteSardona 40 44.9875 -16.6555 1140 1380 1224.17 1224.17 2 2
CommSiteSardona 39 44.9863 -16.6719 1140 1380 1226.56 1226.56 2 0
CommSiteSardona 38 44.9838 -16.6655 1140 1380 1228.84 1228.84 21 0
HvyWpnDepTharmet 37 44.983 -16.6577 1140 1380 1250.84 1250.84 2 2
HvyWpnDepTharmet 36 44.9775 -16.6613 1140 1380 1253.03 1253.03 8 0
HvyWpnDepTharmet 35 44.9758 -16.6549 1140 1380 1262.16 1262.16 2 2
AAASiteGarred 34 44.9677 -16.6586 1140 1380 1264.44 1264.44 2 2
SuspWpnStorage 46 44.9613 -16.6597 1140 1380 1266.67 1266.67 2 1
SAMIADSiteSiteRadar 50 44.963 -16.665 1140 1380 1268.84 1268.84 2 2
SAMIADSiteProbSA2 49 44.9325 -16.7311 1140 1380 1272.52 1272.52 2 2
WarehouseDromada 52 44.8919 -16.9033 1140 1380 1278.57 1278.57 2 0
SAMIADSiteProbSA2 47 44.9563 -16.8625 1140 1380 1284.55 1284.55 2 0
SAMIADSiteProbSA2 48 44.9625 -16.8244 1140 1380 1288.13 1288.13 28 0
SuspWpnStorage 45 44.9858 -16.8213 1140 1380 1318.38 1318.38 2 2
Dumdvga 32 44.9747 -16.8427 1140 1380 1320.94 1320.94 30 1
HQSiteDromada 51 45.0019 -16.8969 1140 1380 1353.14 1353.14 30 0
CorridorSrbacBosnia 45.1166 -17.5416 580 2880 1401.57 — 0 —

Parameters set as follows: maximum number of vehicles: m = 5; maximum iterations: k = 2500; reactive penalty scheme;
LOT starting tour. Total runtime 108 seconds on a Pentium II 300 MHz system.
By convention North latitudes are positive and South latitudes are negative.
By convention, West longitudes are positive and East longitudes are negative.
Time in minutes.
Flight altitude to next point: "0" = 5,000 ft, "1" = 10,000 ft, "2" = 18,000 ft.

27

Figure 10. Bosnia Optimized Tour Route

28

45.2

45

44.8

44.6

44.4

\

 ^gfe-.^
*^\>j^~^—

^^

/

V

LatititudQ

->Longltude

Time

16.6 16.8 17 17.2 17.4

Figure 11. Temporal Route Plot

29

BIBLIOGRAPHY

Armenato, Vinicius A., and Debora P. Ronconi. "Tabu Search for Total Tardiness
Minimization in Flowshop Scheduling Problems," Computers & Operations
Research, 26: 219-235 (1999).

Barbarosoglu, G. and D. Ozgur. "A tabu search algorithm for the vehicle routing
problem," Computers & Operations Research, 26: 255-270 (1999).

Battiti, R. R., and G. Tecchiolli. "The Reactive Tabu Search," ORSA Journal on
Computing, 6: 126-140 (1994).

Bergdahl, B. Operations Officer, 11th Reconnaissance Squadron, Indian Springs AFAF
NV. Personal interview and facsimile. January 1998.

Bodin, Lawrence, Bruce Golden, A. Assad, and M. Ball. "Routing and Scheduling of
Vehicles and Crews; The State of the Art," Computers & Operations Research, 10:
(1983).

Carlton, William B. A Tabu Search to the General Vehicle Routing Problem. Ph.D.
dissertation. University of Texas, Austin TX, 1995.

Chiang, W. C. and R. Russell. "A Reactive Tabu Search Metaheuristic for the Vehicle
Routing Problem with Time Windows," ORSA Journal on Computing, 9: 417
(1997).

Desrochers, M., J. Desrosiers, and M. Solomon. "A New Optimization Algorithm for the
Vehicle Routing Problem with Time Windows," Operations Research, 40: 342-354
(1992).

Departments of the Air Force and Navy. Flying Training, Air Navigation. Air Force
Regulation (AFR) 51-40. Washington: HQ USAF, 15 Mar 1983.

Eckel, Bruce. Thinking in Java—The definitive introduction to object-oriented
programming in the language of the World-Wide Web. Upper Saddle River NJ:
Prentice-Hall, 1998.

Flanagan, David. Java in a Nutshell, A Desktop Quick Reference (Second Edition).
Sebastopol CA: O'Reilly & Associates, 1997.

Garcia, B. L., J. Y. Potvin, and J. M. Rousseau. "A Parallel Implementation of the Tabu
Search Heuristic for Vehicle Routing Problems with Time Window Constraints,"
Computers & Operations Research, 21: 1025-1033 (1994).

30

Gendreau, M., A. Hertz, and G. Laporte. "Tabu Search Heuristic for the Vehicle Routing
Problem," Management Science, 40: 1276-1289 (October 1994).

Gendreau, M., G. Laporte, and R. Seguin. "A Tabu Search Heuristic for the Vehicle
Routing Problem with Stochastic Demands and Customers," Operations Research,
44: 469-477 (May 1996).

Gendreau, M., G. Laporte, and G. Potvin. "Vehicle Routing: Modern Heuristics," in
Local Search in Combinatorial Optimization. Eds. Aarts, E. and J. K. Lenstra.
Chichester: Wiley, 1997.

Glover, Fred and M. Laguna. Tabu Search. Boston: Kluwer Academic Publishers, 1997.

Glover, Fred. "Tabu Search-Part I," ORSA Journal on Computing, 1: 190-206 (Summer
1989).

Liaw, C. "A Tabu Search Algorithm for the Open Shop Scheduling Problem,"
Computers & Operations Research, 26: 109-126 (1999).

McKenna, P. "Eyes of the Warrior—Prying Predator prowls unfriendly skies, peeking at
the enemy," Airman, XLII(7): 28-31 (July 1998).

Norwicki, E. and C. Smutnicki. "A Fast Taboo Search Algorithm for the Job Shop
Problem," Management Science, 42: 797-813 (1996).

Osman, I. H. "Metastrategy Simulated Annealing and Tabu Search Algorithms for the
Vehicle Routing Problem," Annals of Operations Research, 41: 421-451 (1993).

Parsons, T. L. Meteorologist, US Air Force, Air Force Institute of Technology, Wright
Patterson AFB OH. Personal interview. 23 February 1999.

Petridis, V., S. Kazarlis, and A. Bakirtzis. "Varying Fitness Functions in Genetic
Algorithm Constrained Optimization: The Cutting Stock and Unit Commitment
Problems," IEEE Transactions on Systems, Man, and Cybernetics—Part B:
Cybernetics, 28(5): 629-640 (October 1998).

Renaud, J., G. Laporte, and F. Boctor. "A Tabu Search Heuristic for the Multi-Depot
Vehicle Routing Problem," Computers & Operations Research, 23: 229-235
(1996a).

Renaud, J., F. Boctor, and G. Laporte. "An Improved Petal Heuristic for the Vehicle
Routeing [sic] Problem," Journal of the Operations Research Society, 47: 329-336
(1996b).

31

Rochat, Y. and F. Semet. "A Tabu Search Approach for Delivering Pet Food and Flour
in Switzerland," Journal of Operations Research Society, 45: 1233-1246 (1994).

Ryan, Joel L. Embedding a Reactive Tabu Search Heuristic in Unmanned Aerial Vehicle
Simulations. MS thesis, AFIT/GOR/ENS/98M. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH, February 1998.

Ryer, David M. Implementation of the Metaheuristic Tabu Search in Route Selection for
Mobility Analysis Support System. MS thesis, AFIT/GOA/ENS/99M-07. School
of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB
OH, March 1999.

Sisson, M. R. Applying Tabu Heuristic to Wind Influenced, Minimum Risk and Maximum
Expected Coverage Routes. MS thesis, AFIT/GOR/ENS/97M. School of
Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH,
February 1997.

Xu, J. and J. Kelly. "A Network Flow-Based Tabu Search Heuristic for the Vehicle
Routing Problem," Transportation Science, 30: 379-393 (November 1996).

Woodruff, D. and E. Zemel. "Hashing Vectors for Tabu Search," Annals of Operations
Research, Vol. 41: 123-137 (1993).

32

Notation

The following symbols appear in the main body of the paper and are defined as listed.
For the sake of clarity, symbols appearing only in the appendices are defined when
introduced.

a, = arrival time at node i
A = arc set
A = line segment, wind adjustment triangle
AS = airspeed
B = line segment, wind adjustment triangle
cij = cost (travel time) from node /toy
C = line segment, wind adjustment triangle
C, = excess vehicle capacity
d = insertion move depth
dj = departure time from node /
djj = great circle distance between locations / andy
D = maximum tour-length duration
Di = excess route duration
e-, = earliest begin service time of node i
G = graph set
GS = ground speed
H = intermediate heading angle
hijk = travel altitude k between locations / andy
i = insertion move position
k = altitude band
k - iteration
11 = latest begin service time of node i

L = latitude
LD = load overage violations
m = number of vehicles
n = number of customers
qi = non-negative customer demand (quantity) of node i
Q = vehicle capacity
Si = customer service time of node i
Smax(i) = maximum stochastic service time for location i
Smin(i) = minimum stochastic service time for location i
St = stochastic customer service time for location i
t = arbitrary time within time window
Uj = travel time from node i toy
tic = number of load infeasible solutions in the previous ten iterations
tjw = number of time window infeasible solutions in the previous ten iterations
TW = time window violations
thv{t) = tour hashing value
v0 = initial depot node (TSP, VRP)

33

v, = additional nodes (TSP, VRP)
V = vertex set
Wi = wait time to commence at node i
WS = wind speed
Xjj = indicator variable denoting arc from node i toy is included in the tour

Zf (t) = feasible objective function

Z(t) = penalized objective function

Z'f (t) = feasible UAV objective function

Z\t) = penalized UAV objective function

&ij = bearing from location /toy
&ws = wind bearing
¥/,- = random weight for arc i, j
5 = course correction angle
A. = longitude
6 = tabu list length
p = generic penalty scaling factor
PLD = load capacity penalty scaling factor
PTW = time window penalty scaling factor
r = tour position

34

Appendix A. Extended Problem Formulation

This appendix examines the formulation of the traveling salesman problem (TSP),
multiple traveling salesman problem (MTSP), vehicle routing problem (VRP), and
multiple-depot vehicle routing problem (MDVRP). It is provided for generality and
thoroughness as these problem types have additional constraints which were not
mentioned previously since they are intrinsicly modeled in the tabu search heuristic. For
instance, based on the way the tabu search evaluates the neighborhood and swaps
customers, no subtour breaking constraint is provided since it is impossible for the
heuristic to construct a subtour. Notation and numbering of variables differs slightly
from that presented in Chapter 2, as the notation there is tailored to the problem context.

A.l Traveling Salesman Problem (TSP)

The first problem class, and basis for the remaining types, is the traveling
salesman problem (TSP). Begin by defining the TSP structure and objective as follows:
Let G be our network with the set of nodes N, a set of branches A, and the associated non-
negative branch costs of C = Cy. The objective of this problem is to form a tour spanning
all the nodes beginning and ending at the origin (node 1), which yields the minimum total
tour length or cost. In the most basic case, we assume that the costs are symmetric (Cy =
Cß), but the problem can be asymmetric with no loss of generality.
This can be represented as an assignment problem, where exactly one arc x-^ starts at node
/, and exactly one arc xtj terminates at node j. Specifically, the problem is formulated as
follows:

Minimize Z(t) = }_,/_, cuxu (Al. 1)

Where

ll if arc ij is in the tour
xij

-\0 otherwise
Subject to:

1=1
= *y = 1 0 = 1,2, ...,n)

n

1-1

= aj = 1 0 = 1.2,. ...,»)

Where

=w s, X.. 6 {0,1} V

(A1.2)

(Al.3)

V 1,7 = 1,2,...,/! .

As previously mentioned, additional constraints are required to eliminate
subtours. Adding the subtour breaking constraint to the assignment formulation prevents

35

subtours. The three standard ways to represent a subtour breaking constraint (Bodin et al.
1983) are listed as follows:

(1) S = < (xij:): ^ ^ xtj > 1 for every nonempty proper subset Q of N >
[>eß jeQ J

(2) S = < [xy j'-^^Xjj < \R\ -1 for every nonempty subset R of {2,3,...,«} >
{ ieR jeR J

(3) S = ycy): yi - y} + nx(>. < n -1 for 2 < / * j < n for some real numbers yi} .

The first constraint requires that every node subset Q of the solution set be
connected to all of the other nodes in the solution. The second constraint requires that the
arcs in the solution set contain no cycles (a cycle over R nodes must contain li?l arcs. The
third constraint is not intuitively straightforward and calls for more explanation. First,
define y,- as follows:

.th 11 if node / is visited on the t step in a tour

[O otherwise

For an arc in the solution tour (xu =1), the constraint becomes

t-(t + l)+n<n-l .
For an arc not contained in the solution tour (xtj =0), the constraint reduces to

y,. -y, <n-\ .

The third representation has the advantage of adding only n2 -3«+ 2 subtour breaking
constraints to the formulation, where the previous two add 2" constraints (Bodin et al.
1983).

A.2 Multiple Traveling Salesman Problem (MTSP)

Adding more salesmen to the problem gives the next level of complexity, the
multiple traveling salesman problem (MTSP). Let m be the number of salesmen or
vehicles that make up the fleet. Again the objective is to minimize the total distance
traveled. Assume further that the m salesmen depart from and return to the same depot
and that each customer must be visited exactly once by exactly one salesman.

With these changes, the formulation is an extension of the basic TSP presented
above and is represented as

(A2.1)

(A2.2)
,n

n n

Minimize Z(t) = ^ X ci}xi}
i-i j-\

Subject to:

l-HM if 7 = 1
if j = 2,3,.

36

,A \M if / = 1

% \y lf 7 = 2,3,... ,n
where X = (*..)e S, x,y e {0,l} V i,; = 1,2,...,n .

The first constraint in the formulation requires that all salesmen be used by
forcing them to leave the depot. The second constraint requires all salesmen to return to
the depot. Any one of the subtour breaking constraints used earlier in the TSP can be
used for the MTSP.

The apparent complexity of this new problem can be reduced by representing the
MTSP as m copies of the single TSP. This is accomplished by creating dummy depots
(D\,...,Dm) that are connected to the original network. These m copies are either separate
from each other, or are connected with cost prohibitive big M arcs. When these single
TSP copies are connected to a common depot, the problem becomes a series of m
subtours, which when taken together forms the MTSP. This relatively straightforward
transformation of the MTSP helps demonstrates why a TSP algorithm can be used to
solve MTSP problems (Bodin et al. 1983).

A.3 Vehicle Routing Problem (VRP)

The next extension of the TSP is the Vehicle Routing Problem (VRP) which is
obtained by adding a capacity constraint to the salesman or vehicles. In the VRP, a
number of vehicles w leave a depot and service a number of customers n, each possessing
a unique demand d{. Each vehicle v has a limited capacity Kv and a maximum route
duration Tv that constrains their closed delivery routes, or return to depot time. This
particular instance of the VRP is commonly known as the general vehicle routing
problem (GVRP). If the maximum route lengths or range constraints are removed, then
this problem is referred to as the standard vehicle routing problem (SVRP) (Bodin et al.
1983). Additionally, the time required for a vehicle v to deliver or service at node i is st

v,
the travel time for vehicle v from node i to nodey is u/, and finally Xjf = 1 if arc i-j is used
by vehicle v. From this, the formulation of the GVRP is as follows:

Minimize 2(1) = ^^^.^ (A3.1)
,=1 7=1 v=l

Subject to:

ZZ4=1 0' = 2,...,K) (A3.2)
;=i v=i

n w

XZ^=1 0' = 2, ...,«) (A3.3)
=1 v=l

2X-2X-=° (y=\,...,w;p=\,...,n) (A3.4)
i = l y=l

£4(i>P^v (v=l,...,w) (A3.5)
i=l 7 = 1

37

IXI^+II«^ (v=l,...,w) (A3.6)

1X<1 (v=l,...,w) (A3.7)

X^<1 (v=l,...,w) (A3.8)
/ = 2

where X=(^)eS, JE* e {0,l} V i,j,v .

The objective function, which minimizes the overall distance, remains the same but is
formulated to sum over all vehicles. Equations (A3.2) and (A3.3) require that every
customer is visited by exactly one vehicle. It is assumed that a customer's demand does
not exceed vehicle capacity and that each customer is fully serviced by the single vehicle
that visits it. Equation (A3.4) requires continuity of our routes while (A3.5) maintains
the vehicle capacity constraint. Since route length restrictions are represented with times,
equation (A3.6) requires that maximum route duration is not exceeded. Finally,
equations (A3.7) and (A3.8) limit the number of vehicles used.

In addition to these equations, subtour breaking constraints, slightly modified
from those used earlier in the TSP, must be included. Since it is the most efficient, the
third subtour representation is selected for expansion as follows:

S = \xjj : yj - yVj + nx]. < n -1 for 2 < i * j < n for some real numbers v,v}

This applies the original subtour breaking constraint to each vehicle in turn. We
note that some redundant constraints can be eliminated from the formulation above.
Using (A3.2) and (A3.4) enforces (A3.3) automatically and makes it unnecessary (Bodin
et al. 1983). Likewise (A3.4) and (A3.7) imply (A3.8) so this too can be eliminated from
the formulation (Bodin et al. 1983).

Finally, one common constraint added to the VRP is time windows. Let aj be the
arrival time to node j, ej be the earliest delivery time allowable and /; be the no later than
time for delivery. A nonlinear representation yields

aj=HT^+si+t?xl 0' = 1>2,...,") (A3.9)
v i

A, =0 (A3.10)

e1<a1<l.1 {j = 2,...,n) . (A3.ll)

If xl =0 then a} =0. Otherwise a.j is the sum of the previous arrival time (a, = 0), the

service time at node i (^,v), and the travel time from / to j (fVj). Alternatively the linear

representation of time windows constraint (Bodin et al. 1983) can be used in the
formulation

aj>(ai+S;+ri-(l-x^T:J

«^fa + ^v+^)+(i-4>Ct,
for all i\ ;> . (A3.12)

38

When xjj = 1, the second half of the equation is eliminated and a; is determined

from the previous arrival time, previous service time, and the travel time between the
nodes. When xl = 0, the constraints are redundant.

>j

A.4 Multiple Depot Vehicle Routing Problem (MDVRP)

Expanding the previous GVRP to account for multiple depots, or bases of
operation, gives the multiple depot VRP. This problem can be formulated with only
minor changes. Let M be the number of depots in our problem. First the original VRP
formulation indexes are changed for equation (A3.2), (j = M + 1, ... , n), and equation
(A3.3), (i = M + 1, ... , n). Next the constraints (A3.7) and (A3.8) are changed to sum
over all the depots individually to require that the number of vehicles used does not
exceed the number of vehicles available.

M n

X 2>,;;<i (v=i,...,W)
,=1 j=M+\

M n

X|>;<i (v=i,...,w)
p=\ i=M+\

The MDVRP also requires an adjustment to the subtour breaking constraint.
Again, only one is required (Bodin et al. 1983).
(1) S = {(XJJ): ^^*,y ^1 for every nonempty proper subset Q of {1, 2, ... , n)

containing nodes 1,2, ... ,M};
(2) 5 = {(xij): ^ ^ Xy < |/?j — 1 for every nonempty subset R of {M +1, M+2 , ... , n}};

ieR jeR

(3) S = {(xij): y, - y . + nxtj <n-\ fovM+l<i^j<n for some real numbers y,} .

39

Appendix B. Tabu Search vs. Other Heuristics—TSP Example

Objective: Minimize distance, d

Initial Order, d= 3138

Global Greedy, d = 2238

Nearest Neighbor, d= 2108

Tabu Search, of =1830

Nari Data Set (Sisson 1997)

40

